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Abstract

This paper addresses the integrated load planning and sequencing problem for double-stack
intermodal trains. Even though this operational problem is highly relevant in intermodal
terminals, it has seen no attention in the operations research literature so far. Prior models
either focus on single-stack railcars or treat the load planning and the load sequencing prob-
lems separately. We introduce a flexible modelling of the movements of the handling equip-
ment adaptable to various operating conditions. By extending prior work on load planning,
we propose six integer linear programming formulations differing in the number of constraints
and variables. An extensive numerical study identifies two better performing formulations.
With these formulations, we solve medium-size instances with a commercial general-purpose
solver in reasonable time. A case study based on real data from the North American market
highlights that the integrated load planning and sequencing problem can considerably reduce
the container handling cost in intermodal terminals compared to sequential solutions.

Keywords: Transportation; freight; intermodal railway terminals; double-stack train
loading; load sequencing

1. Introduction

Intermodal transportation plays an important role in global supply chains and is a growing
market. In intermodal freight, load units are transported from origin to destination using at
least two different modes of transportation. The long-haul leg of ground transportation is
typically carried out by rail. Therefore, load units — usually in the form of standardized
containers — must be transferred from one transportation mode to another. This takes place
in intermodal terminals, which are crucial for the efficiency of the overall transport chain.

In intermodal terminals, many difficult planning problems arise on the strategic, tacti-
cal, and operational levels. This paper addresses an operational problem which consists in
determining the containers to be loaded on a double-stack train along with the sequence of
retrieving and loading moves such that the value of the loaded containers is maximized and
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the handling effort in the terminal is minimized. We refer to this problem as the load planning
and sequencing problem (LPSP) for double-stack intermodal trains.

Even though this problem is highly integrated, it has mostly been treated as two sepa-
rate problems in the related literature. The load planning problem finds a subset of stored
containers to be loaded on a train and the exact way of loading them to minimize the value
of unloaded containers while obeying all relevant technical constraints. The so-called load
plan then imposes restrictions on the load sequencing problem, whose aim is to determine a
loading order of containers meeting all relevant constraints and minimizing the handling cost
in the terminal.

Solving these problems sequentially might lead to unfavourable results: the load plan
is determined without taking sequencing constraints into account and the load sequencing
is based on a fixed load plan. Considering two containers allocated to the same railcar
one on top of the other, it is necessary to place the container assigned to the bottom slot
onto the railcar first. If this particular container cannot be retrieved from the stack before
the second container, unproductive handling movements inevitably take place. However,
there are typically many different optimal load plans that comprise the same or a similar
set of containers. Taking the sequencing constraints into account while determining the load
plan, one could switch the container assignments and achieve a load plan with exactly the
same commercial value, thus allowing a more efficient loading sequence. Integrating the load
planning and the load sequencing problems can therefore reduce the loading effort without
deteriorating the load plan.

The integrated problem is, however, very challenging due to many complex loading rules
depending on railcar and container characteristics connected with varying retrieving sequences
determined by crane types, container positions and characteristics. By contrast to single-stack
railcars, the sequencing does not only depend on the stacking position but also on the current
loading state of each railcar. This is why even small changes in the load plan can have a
large impact on the load sequencing. In addition, we consider an operational problem which
should be solved within minutes.

Most of the existing literature related to the load planning problem considers single-stack
railcars (e.g., Bruns and Knust, 2012; Dotoli et al., 2013), even though double-stacking of
containers is of high relevance for the North American market. Mantovani et al. (2018) propose
a novel model for the load planning problem dealing with a high variety of containers and
railcars, including double-stacking. They solve instances with up to over 1,000 containers to
optimality using a generic all-purpose solver. However, the load sequencing is not considered
part of the problem. A few papers have addressed the integrated LPSP, namely Corry and
Kozan (2006) and Ambrosino et al. (2011), among others. Even though they solely consider
single-stack railcars, large instances cannot be solved by exact methods. Part of the models
make simplifying assumptions such as pre-set loading sequences, the exclusion of rehandling
movements, or the prohibition of overbooking. The largest instances solved to optimality
without those simplifying assumptions comprise 40 containers (Ambrosino et al., 2013).

The contributions of this paper are threefold: First, we introduce six integer linear program
(ILP) formulations for the LPSP for double-stack intermodal trains including a flexible way to
model the local restrictions related to handling equipment and terminal layout. This problem
is of high practical relevance, especially for rail freight on the North American market, but
has seen no attention in the literature so far. We hereby build on the work of Mantovani
et al. (2018) and extend their mathematical model. The presented models differ in the
number of constraints and variables. Second, we numerically assess the performance of the



ILP formulations by conducting extensive numerical experiments both with gantry crane and
reach stacker movements by applying an exact algorithm. We also evaluate different ways
to integrate distance in the objective function. The experiments allow us to identify two
better performing formulations, which introduce two sets of decision variables related to the
loading sequence of the containers and to the loading state of the platforms. With these
formulations, an optimal load and sequence plan can be reliably found for blocks of 1,000 ft
and 75 containers. Third, we report results of a case study highlighting the benefits of our
model compared to sequential models in terms of a significant reduction of the handling cost
in terminals. In the test instances comprising 50 containers, the sequential solutions require
on average 4.1 rehandled containers for gantry cranes and 5.9 for reach stackers, respectively.
The rehandling of containers and other unproductive movements can be totally avoided for
all instances when solving the integrated model.

The remainder of this paper is structured as follows: Section 2 gives an overview of the
related literature. Section 3 introduces the problem statement of the LPSP for double-stack
intermodal trains. In Section 4, we propose different ILP models for the LPSP and describe
the solution procedure. The benefits and drawbacks of each formulation are discussed in
Section 5, where we conduct extensive numerical experiments. In Section 6, we conclude the
paper and outline some directions for further research.

2. Literature review

There exist several decision problems related to the planning and operation of container
terminals (Vis and de Koster, 2003; Steenken et al., 2004; Stahlbock and Vof, 2008; Carlo
et al., 2014a,b). According to a classification of operational problems arising in terminals
provided by Boysen et al. (2010), the problem addressed in this paper comprises two out
of five subproblems: deciding on the containers’ positions on trains and on the sequence of
container moves per crane. In spite of a multitude of papers on related problems, there is
to the best of our knowledge no model considering the integrated LPSP for double-stack
intermodal trains.

2.1. Load planning problem

As stated by Mantovani et al. (2018), the load planning problem for intermodal trains can
be seen as a special case of the packing-cutting-knapsack problem (Dowsland and Dowsland,
1992; Dyckhoff et al., 1997; Martello and Toth, 1990; Wéscher et al., 2005). According to a
common typology (Wéscher et al., 2005; Dyckhoff, 1990), the load planning problem is similar
to a Multiple Identical Large Object Placement Problem: the value of weakly heterogeneous
small items (standardized containers) assigned to a defined set of objects similar in size
(railcars) needs to be maximized. The main difference to known packing-cutting-knapsack
problems is that the objects and items are of similar dimensions (Mantovani et al., 2018).

The load planning problem has been extensively studied with different levels of detail.
Some papers focus on particularly detailed modelling of weight restrictions (Bruns and Knust,
2012; Heggen et al., 2016). Others incorporate global restrictions, e.g., the unloading effort in
other terminals, with the local loading rules in the considered terminal (Heggen et al., 2016;
Dotoli et al., 2013, 2015, 2017; Bostel and Dejax, 1998; Cichenski et al., 2017). Double-stack
trains are considered in a few models (Corry and Kozan, 2008; Bruns and Knust, 2012; Heggen
et al., 2016; Lai et al., 2008a,b; Mantovani et al., 2018), however, numerical experiments are
only reported in the latter three. Lai et al. (2008a,b) make simplifying assumptions that may



lead to invalid load plans in practice (Mantovani et al., 2018). The variety of containers and
railcars considered ranges from homogeneous containers (Bostel and Dejax, 1998; Corry and
Kozan, 2006; Wang and Zhu, 2014) to a realistic variety of container and railcar characteristics
(Bruns and Knust, 2012; Mantovani et al., 2018). Common objectives are the maximization
of the value of loaded containers and the minimization of setup costs (preparation of the
railcar for a given combination of container types). Other papers concentrate on the number
of necessary railcars (Corry and Kozan, 2008), on the aerodynamic efficiency (Lai et al.,
2008a,b) or on the wear of breaking mechanisms (Corry and Kozan, 2006). In some papers,
the minimization of the handling cost is the aim of the load plan without determining the
actual loading sequence of the cranes (Bostel and Dejax, 1998; Corry and Kozan, 2008). Bruns
et al. (2014) focus on robust load plans considering uncertainties in the input parameters.
Due to the complexity of the problem, several heuristic solution methods are proposed (Bostel
and Dejax, 1998; Corry and Kozan, 2008; Dotoli et al., 2015; Anghinolfi et al., 2014). The
largest instances solved to optimality contain over 1,000 containers (Mantovani et al., 2018).

2.2. Load planning and sequencing problem

Most of the literature on load sequencing problems is applied to maritime container ter-
minals (see Bierwirth and Meisel, 2010 for a thorough overview on quay crane scheduling
problems and Boysen et al., 2017 for a classification scheme). Imai et al. (2006) investigate
the simultaneous stowage and load planning for a container ship aiming at maximizing stabil-
ity and minimizing the rehandling of containers in the yard. They propose a multi-objective
integer programming formulation. Related problems are the Block Relocation Problem (BRP)
and the Pre-Marshalling Problem (PMB). The BRP finds a minimal number of relocation
movements for a given retrieval sequence, whereas the PMB organizes the blocks such that
the number of relocation movements found by the BRP is minimized (Expdsito-Izquierdo
et al., 2015). However, the loading sequence is an input and not subject to optimization for
both problems. The load sequencing problem itself can be seen as a NP-hard asymmetric
traveling salesman problem (Boysen et al., 2010).

Some settings conduct the load sequencing in a second stage based on a fixed load plan
either by optimization (Bostel and Dejax, 1998; Wang and Zhu, 2014; Souffriau et al., 2009) or
simulation (Corry and Kozan, 2008). We, however, consider the integrated LPSP for double-
stack intermodal trains. Similar integrated problems are addressed in some papers, but
none of them permits double-stacking of containers on trains. In addition to the dimensions
discussed in the previous section, the models differ in loading and rehandling policies as well
as in the number and characteristics of cranes.

Like all other papers apart from Corry and Kozan (2006), we assume that the train has
been unloaded in a prior stage and the scope of the problem is limited to the loading process.
The vast majority of the papers — including ours — assume that the sequencing problem
is decomposable by crane and therefore consider one crane at a time. This relates to the
yard partition problem, which divides intermodal terminals into disjunct areas levelling the
workload for cranes (Boysen and Fliedner, 2010; Boysen et al., 2010). However, a few papers
involve more than one crane in the sequencing problem (Ambrosino et al., 2016; Otto et al.,
2017).

Some settings restrict the loading sequence of the train from its head to its rear (Ambrosino
et al., 2011; Ambrosino and Caballini, 2018). A few papers investigate the impact of forbidding
non-sequential loading orders and find that the complexity of the problem is considerably



reduced (Ambrosino et al., 2013; Ambrosino and Siri, 2014). As the instances with a non-
sequential loading policy could not be solved to optimality, no consequences on the number
of rehandlings are reported. Others, similar to ours, impose a non-sequential loading of
the train (Ambrosino and Siri, 2015; Ambrosino et al., 2016; Corry and Kozan, 2006). All
load planning and sequencing papers allow rehandlings of containers, yet the processes differ
depending on the considered setting. In Corry and Kozan (2006), a container is rehandled if
it cannot be directly transferred from an inbound truck to an outbound train. In the other
papers, rehandlings occur if a needed container cannot be accessed in the storage area and
other blocking containers must be retrieved first. Some computational studies investigate
the consequences of forbidding reshuffles (Ambrosino et al., 2013; Ambrosino and Siri, 2014).
Contrary to the prohibition of non-sequential loading orders, the complexity of the problem
remains high and it cannot be quickly solved with a general-purpose solver (Ambrosino and
Siri, 2014).

We consider here a static environment with deterministic data: the availability of contain-
ers and railcars does not change over time. By contrast, a dynamic setting with uncertainty
in the data is treated by Corry and Kozan (2006). They adapt the load plan in a rolling
horizon environment by solving a deterministic model with updated data each time a trigger
event occurs.

Typical objectives of the LPSP are the minimization of the handling cost consisting of
rehandlings (Corry and Kozan, 2006; Ambrosino et al., 2011, 2013; Ambrosino and Siri, 2014;
Ambrosino et al., 2016; Ambrosino and Caballini, 2018) and costs for the distance covered by
the handling equipment (Corry and Kozan, 2006; Ambrosino et al., 2013; Ambrosino and Siri,
2014). The latter costs are interpreted in different ways. Corry and Kozan (2006) only take
into account the costs if the slot assignment of a container is changed compared to a prior
load plan, because they assume that trucks deliver containers straight to the initially assigned
railcar. Ambrosino et al. (2013) consider the distance travelled by the gantry crane along the
track, whereas Ambrosino and Siri (2014) only consider unproductive backward movements of
the crane. The latter two papers exclude the costs for the distance of reach stackers that place
the containers next to the assigned railcar. Most papers additionally incorporate objectives
related to the load planning problem discussed in Section 2.1.

Due to the complexity of the problem, exact algorithms are applied only to small instances.
Some papers develop tailored heuristic solution techniques (Ambrosino et al., 2011; Ambrosino
and Siri, 2015; Ambrosino and Caballini, 2018). The largest instances solved to optimality
are relatively small compared to the load planning problem. Ambrosino et al. (2013) solve
instances comprising 40 containers allowing a non-sequential loading order and rehandling of
containers. Ambrosino and Siri (2015) solve instances with 50 containers imposing a strictly
sequential loading order. Ambrosino et al. (2016) consider two cranes and solve instances with
24 containers to optimality. Recall that the former models do not consider double-stacking
of containers.

2.8. Summary

Table 1 extends the literature review by Heggen et al. (2016) and summarizes the char-
acteristics of the LPSP discussed earlier. As this literature review shows, and to the best of
our knowledge, there is no model that treats the LPSP for double-stack intermodal trains.
So far, Mantovani et al. (2018) is the only paper that takes a high variety of loading patterns
dealing with double-stack railcars into account. However, this model misses the sequencing
part. All integrated load planning and sequencing models only consider single-stack railcars.



Additionally, they either lack in realistic variety of the containers (Corry and Kozan, 2006)
and in flexibility of the loading sequence (Ambrosino et al., 2011; Ambrosino and Caballini,

2018), or they exclude overbooking of trains (Corry and Kozan, 2006).
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Table 1: Related literature on the load planning and the load sequencing problem for intermodal trains
(e): model adaptable but not tested, [¢]: depending on model in paper

3. The load planning and sequencing problem for double-stack intermodal trains

The LPSP is a highly integrated operational problem governed by the characteristics of
the layout of the terminal, the containers, the train, and the handling equipment.



3.1. Intermodal rail-road terminals

An intermodal rail-road terminal consists of several areas. A schematic layout as consid-
ered in this paper is depicted in Figure 1. Trucks arrive at the terminal to unload their load
units. After being picked up by the handling equipment, the load units are stored in the stor-
age area. Direct rail-road or rail-rail transfers are not considered in this paper. Cranes and
trucks may move in the gray zones (Figure 1), but terminal-specific restrictions may apply.

Back side

Storage
area

Front side

[ SIS SSESEEENEENE

Train operation area

X

Figure 1: Aerial view of the considered container terminal layout

The storage area is divided into several parts according to the containers’ destinations.
As shown in Figure 1, lots are located along the track. Each lot consists of several stacks with
a given maximum height. The coordinates X, Y and Z indicate the exact position of each
container in the storage area. The X-coordinate refers to the lot. The Y-coordinate indicates
the depth and the Z-coordinate specifies the vertical position of a container. Depending on
the handling equipment, the storage area can be accessed from above, from the front side of
the stack (seen from the track), or from the back side of the stack (as it is appropriate for
the lined container in Figure 1).

When a load unit is due to be loaded on the train, a crane retrieves the container from
the storage area, carries it to the train, and loads it onto its assigned slot. If the container
is not directly accessible, it is necessary to rehandle blocking containers. The processes for
unloading the trains are out of scope of this paper.

3.2. Containers

The load units considered in this paper are standardized containers. As we consider a
static problem, the availability of containers or trains does not change during the loading
process. Each container is characterized by its size (in the North American market 20 ft,
40 ft, 45 ft, 48 ft and 53 ft), its height (low-cube or high-cube containers), its weight, and its
type (e.g., refrigerated, tank). Depending on the container type, different technical loading
restrictions may apply and depending on the content, the customer, and the due time, each
container has a specific commercial value.

3.3. Intermodal double-stack trains

Railcars that have a common destination and leave the terminal in the same train are
called a block and trains consist of several blocks. In practice, LPSPs are typically solved for



blocks and not for the whole train. A block consists of a given sequence of railcars. Each
railcar is defined by its type listed in a catalogue widely used in practice (Association of
American Railroads, 2017). The railcars consist of between one and five platforms. Platforms
can be either single-stack or double-stack and are characterized by various technical features.
Single-stack platforms have one slot, whereas double-stack platforms are equipped with a
bottom slot and a top slot.

Railcars can be used in several configurations differing in the number and length of loaded
containers. We refer to these configurations as loading patterns. Since loaded containers can
influence the feasible set of container combinations on neighboring platforms of the same
railcar, the loading patterns are derived by railcar and not by platform (see Association
of American Railroads, 2017 and Mantovani et al., 2018 for further explanations). As an
example, Table 2 gives a subset of loading patterns for a given railcar with one platform.

Container length [ft] 20 40 45 48 53
Pattern
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Table 2: Example of a set of loading patterns for a one-platform railcar: each cell corresponds to the number
of containers of a specific length that are included in a given pattern (Mantovani et al., 2018).

Besides the loading patterns, additional constraints related to the stability of the load
units apply. To meet the regulations related to a maximum height of the center of mass for
each loaded platform, a parameter for a maximum weight for top containers is derived per
bottom container and platform (Association of American Railroads, 2017; Mantovani et al.,
2018).

We assume that all railcars of the block are empty at the start of the loading process. A
top slot can only be loaded if either two 20 ft containers or one container measuring at least
40 ft has been loaded before on the bottom slot of the same platform.

3.4. Handling equipment

Terminals are equipped with special cranes — we consider gantry cranes and reach stackers
— that handle the intermodal cargo within the terminal. Gantry cranes are immobile facilities
that pick a container from above. Reach stackers, by contrast, are vehicles that lift containers
from the side. In this paper, we assume that only one gantry crane or one reach stacker is
loading a given block for which we solve the LPSP. The schematic designs of both gantry
cranes and reach stackers are depicted in Figure 2.



(a) A gantry crane (Adobe Stock, 2018a) (b) A reach stacker (Adobe Stock, 2018b)

Figure 2: Schematic design of gantry cranes and reach stackers

Obviously, not every container can be retrieved by the handling equipment at any time.
Therefore, we define accessibility rules for each container. For a gantry crane the rules are
simple: a container can only be retrieved if it is the uppermost container of its stack.

For reach stackers, however, the rules are more complex. Reach stackers retrieve containers
either from the front side or from the back side of the lot (cf. Figure 1). As all container
positions and the possible crane movements are given, impossible sequences between two
containers can be derived a priori. We therefore define pairs of containers (i, i), such that
container i must be taken out of the stack before container 7. In other words, the loading
sequence 7 before ¢’ is forbidden.

Three sets of forbidden loading sequences are defined: one for the gantry crane (M%), one
for the reach stacker retrieving the containers from the front side (M%?"), and one for the reach
stacker from the back side (M%#). The rules are either derived by geometric dependencies
or by technical limitations of the handling equipment. We define the container pairs (i, ')
using the following rules (cf. Figure 3):

(a)

(b) container 7 is hidden by #/: X' = X", Y <Y, Zi < Z%
) container ¢ is more than three positions behind i': X’ = X%, Y +3 <Y?
)

the mass of container i (g;) exceeds the threshold 8! for being lifted over one container

row: X'=X" YY" +1=Y", g; >0

(e) the mass of container i (g;) exceeds the threshold 6?2 for being lifted over two container
rows: X' = X" YV +2=Y" ¢g; > 62

(f) — (i) analogously to (b) - (e) restrictions for reach stackers retrieving a container from

the back side. The rules are rotated with respect to the Y-coordinate.

The set M© comprises all container pairs fitting the rule (a). The set MR relates to the
rules (a) — (e), and for the set M5, the rules (a), and (f) — (i) are relevant. These forbidden
movements are illustrated in Figure 3 and can easily be adapted to local restrictions.
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Figure 3: Overview of forbidden loading sequence i — i’ (for gantry cranes: (a), for reach stackers from the
left hand side (a) — (e))

If a forbidden sequence is executed, a container is inaccessible. It is then necessary to
either retrieve the container from the other side of the storage area (if possible) or to move
at least one blocking container apart, such that the required container can be reached. The
blocking containers may stay in the terminal or be loaded to the train at a later moment and
must then be touched again. We refer to this procedure as double touching or rehandling (in
the literature, it is also known as reshuffling).

3.5. Challenges and objective

The LPSP for double-stack intermodal trains aims at assigning stored containers to slots
on a train and at finding an optimal sequence of loadings such that the value of unloaded
containers, the setup costs of the train, and the handling costs in the terminal are minimized.
The handling costs comprise the distance covered by the crane, the number of rehandled
containers, and the number of detours to the back side made by the crane. As illustrated in
Figure 1, the reach stacker covers a distance that can be appropriately expressed by taxicab
geometry, which is used in the objective function.

The considered problem comprises numerous interdependent decisions. The decision on
the loading pattern defines how many containers of each size can be loaded to each platform.
The assignment of containers to slots is made by respecting the loading patterns and addi-
tional constraints such as weight restrictions. This assignment imposes restrictions on feasible
loading sequences as containers assigned to top slots can only be loaded if the bottom slot
is full. The loading sequence gives us information about which containers cause a detour or
force other containers to be rehandled due to inaccessibility. Thus, inopportune container-slot
assignments can be derived. Changes in the load plan may affect feasible load sequences again
or reduce the handling effort.

Summarizing, the LPSP for double-stack intermodal trains is defined as follows: Given a
set of containers stored in a terminal with their characteristics and position, a sequence of
railcars, a handling equipment, and the relevant constraints, determine the subset of contain-
ers to load, the exact way and sequence of retrieving and loading them, such that the value
of unloaded containers and the handling cost is minimized.

4. ILP formulations and solution procedure

In this section, we introduce several formulations for the LPSP for double-stack inter-
modal trains. All formulations are based on the ILP for the load planning problem proposed
by Mantovani et al. (2018) that we describe in Section 4.1. In Section 4.2, we introduce
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sets, notation, and decision variables that are used in all sequencing formulations. Next, in
Sections 4.3 — 4.8, we define six different ILP formulations. Table 3 gives an overview of the
formulations. They differ in the number of constraints and variables that they contain, as well
as in the strength of their LP relaxation. The formulations can most easily be distinguished
by the meaning of the variables. The sequencing variables in the formulations A1, B1, and
C1 are process-oriented: they indicate the stage at which a container loading occurs (loaded
at stage t). By contrast, the variables of the remaining formulations are state-oriented: they
refer to the fact that a container has been loaded at or before a certain stage or not (loaded
by stage t). The latter simplifies the writing of some constraints at the cost of additional
constraints. The A formulations contain three-index sequencing variables resulting in a high
number of variables and a rather low number of constraints. The B formulations use two-
index sequencing variables which carry less information. This results in fewer variables but
considerably more constraints. The C formulations are between the A and B ones in the sense
that they complement the set of sequencing variables introduced in the B formulations by an
additional set of variables related to the fullness state of each bottom slot. In Section 4.9, we
describe the applied solution procedure.

. Ziqt Zit Zits bqt
Variables Name Section Name Section Name Section
Process-oriented Al 4.3 B1 4.5 C1 4.7
State-oriented A2 4.4 B2 4.6 C2 4.8

Table 3: Names of the presented LPSP formulations

4.1. Formulation of the load planning problem

As the the model proposed by Mantovani et al. (2018) is the only one that deals with a
high variety of loading patterns for double-stack railcars, we use this formulation as a basis for
the extended problem including the loading sequence. The scope of the load planning model
is to assign the containers ¢ € N to the slots ¢ € @ of a block in an intermodal terminal.
Each railcar j € J can be loaded according to given loading patterns k € K.

The railcars are characterized by their setup costs 7; and their set of loading patterns Kj.
For each platform, information is given on the length of its bottom slot L, and the maximum
weight-carrying capacity G,. The parameter i, is 1 if slot ¢ is a bottom slot, and 0 otherwise.
We denote by @, the set of all bottom slots and by @), the slots of platform p. Each container
is defined by its commercial value 7;, its length [;, and its weight g;. Containers are either
part of the subset of low-cube N¢ or high-cube N¥¢ containers. Mantovani et al. (2018)
additionally introduce six types of technical restrictions. As these restrictions do not affect
the load sequencing, we omit them in this paper.

Let us start by introducing the four sets of binary variables that are used in the model.
The decision variables wj assign loading patterns to railcars. The decision variables v,
take care of the container-slot assignments. Finally, the auxiliary variables y;, and x;; assign
containers to platforms and to railcars, respectively. The load planning problem can be
written as follows:

mian 1—Zviq +Z7'jzwjk (1)

iEN 9€Q Je€J  keK;
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s.t.

D g <1 Vie N (2)
q€Q
D kg <1 Vge @ (3)
iEN
ip =Y Vig Vie N,Vpe P (4)
qup
T =Y Yip Vie N,VjeJ (5)
pEPj
> wir<1 VielJ (6)
kGKj
> Nk () Wik = > i Vpe P, VjeJ,YVhe H (7)
keK; i€ENy,
S bgvigli < Ly Vpe P (8)
i€EN g€Qp
> yipgi < Gy Vpe P (9)
1EN
Z Z (1 - ,uq) Viqgi < Z Z /quviqcich Vpe P (10)
iENLC qeQp 1EN g€Qp
oD () viggi <Y Y naviac e P (11)
iENHC geQyp €N qeQyp
wj € {0, 1} VieJ Vke K (12)
viq € {0, 1} Vie N,VqgeQ (13)
yip € {0, 1} Vie N,¥pe P (14)
Tij € {0, 1} Vie N,Vj e (15)

The objective (1) is to minimize the weighted costs for containers left in the terminal
and the setup costs for each loaded railcar. Constraints (2) make sure that each container is
assigned to only one slot, whereas (3) ensure that at most one or two containers are assigned
to each slot: k; is a constant that takes value 0.5 for containers of length 20 ft and 1 for
all other containers. Constraints (4) and (5) link the platform variables y;, with the slot
variables v;, and the railcar variables x;;, respectively. Constraints (6) limit the number of
chosen patterns per railcar to 1 (empty railcars have no assigned pattern) and constraints
(7) link the attributes of the pattern to the loading variables of each platform. Constraints
(8) and (9) guarantee a feasible loading with respect to the maximum length and weight of
each platform. Finally, the center of gravity constraints are formulated in (10) for low-cube
containers and in (11) for high-cube containers, respectively.

The presented formulation assigns a loading pattern to each railcar, and a container to
a slot on a railcar. In the original model, the assignment of a container to a slot on a given
platform can be determined or changed in a post-processing step. As our aim is to define the
load planning and sequencing simultaneously, we add the constraints (3) ensuring a feasible
slot assignment. We refer to Mantovani et al. (2018) for a more in-depth explanation of the
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model and for numerical results.

4.2. Notation and variables for all LPSP formulations

First, we introduce the set T of all stages during the loading process. We allow one
container loading per stage and refer to the first stage as ¢t/ and to the last one as t!. In
order to reduce symmetry, we ensure that all loadings are contiguous at the beginning of the
time horizon. For the objective function, we need three cost parameters: Z-lq represents the
distance cost between the stacking position of container ¢ and slot ¢ related to the taxicab
distance, 32 is the cost for the rehandling of a container, and /3% represents the cost for a
detour of the reach stacker to the back side of the lot.

For all formulations below, we define three sets of binary variables: d; taking value 1 if
container ¢ is double touched, v; taking value 1 if the reach stacker retrieves container ¢ from
the back side of the lot, and uy taking value 1 if the handling equipment reverses from slot
q to the stacking position of container ¢. These definitions lead to the following constraints:

d; € {0, 1} Vie N (16)
v € {0, 1} Vie N (17)
uqi € {0, 1} Vge Q,Vie N. (18)

As mentioned above, the movements of the reach stacker are more complex than those
of the gantry crane. Therefore, we explicitly refer to the reach stacker movements in the
formulations. For the gantry crane movements, the set of M ¥ is replaced by M and the ~;
variables are left out both in the objective function and in the constraints. The constraints
concerning the movements M8 are unnecessary for this case.

4.8. Formulation A1

In the formulations A1 and A2, we consider three-index sequencing variables z;4. These
formulations require a high number of variables but come with a rather low number of con-
straints.

We define z;;; as a binary decision variable taking value 1 if and only if container ¢ is
loaded in slot ¢ in stage t. The LPSP can be written as follows:

min Z m|1— Z Vig | + Z Tj Z Wi + Z Z /Bilq (Vig + ugi) + BQdi + 53% (19)

iEN 7€Q jeJ  keK; iEN \qeQ

s.t.

Constraints (2) — (18)

D zigr = vig Vie N,VgeQ (20)
teT
YN za<i vteT (21)
i€N qeQ
Z Z Zig(t+1) < Z Z Zigt VteT \ {tl} (22)
iEN q€Q €N g€Q
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Vie N,V e N,VqeQ,

Zigt + Vig + Z Zits(t+1) — Ugit < 2 Vte T\ {tl} (23)
SEQ
t t
SN g <D0 g+ dy V(i, i) e M®F vteT (24)
qeQ £=0 qeQ (=0
t t
Z Zziqg < Z Zzi/qg + di/ — v + 1 V(’L, i/) S MRB, VteT (25)
qeQ =0 qeQ =0
t t
)BPIPIEMIRIRED 3b 3 SRR (20
1EN qeQp £=0 1€EN qeQp {=0
Zigt € {0, 1} Vie N,VgeQ,VteT. (27)

Each assigned container must be loaded in its assigned slot (20). The number of loadings
per stage is limited to 1 (21). All loadings must be contiguous, e.g., no stage without loading
is allowed between two stages with loadings (22). Constraints (23) link the assignment vari-
ables v;q, the sequencing variables z;,; and the reverse variables u4;. The accessibility of the
containers must be respected both for containers loaded from the front side (24) and from the
back side (25) of the lot. If ¢’ is rehandled or i is reached from the other side of the lot, the
forbidden sequence is bypassed. Constraints (26) ensure that the top slot of each platform is
loaded only if the bottom slot has been filled.

4.4. Formulation A2

In the sets of constraints (24) — (26), we need to sum over many stages to obtain the
information whether container ¢ has been loaded to slot ¢. In formulation A2, we redefine
Ziqt as a state-oriented variable to decide whether container ¢ is loaded to slot g by stage ¢.
Once container ¢ has been loaded to slot ¢, the value of the associated z;4; variables is 1 for
all following stages. The model then becomes:

minz m | 1— Z Vig | + Z Tj Z Wik + Z Z Bilq (vig + ugi) + 52di + 53%‘ (28)

iEN qeQ jeJ  keK; 1€EN \ qeQ
s.t.
Constraints (2) — (18)
Zigt! = Vig Vie N,VqeQ (29)
Zigt < Zig(t41) Vie N,VgeQ,vteT\{t'} (30)
S i <D0z +1 vee T\ {t'} (31)
iEN qeQ iEN qeQ
Z Z (2ig(t+1) — Zigt) < Z Z (zigt — Zig(t—1)) vte T\ {t/, ¢} (32)
i€N qeQ 1EN ¢q€Q
Vie N,Vi € N,VqeQ,
Zigt = Zige—1) + D (2urs(e+1) = Zrst) + Vig — ugir < 2 vt e T\ {t/, ¢} (33)

sEQ
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Z Zigt < Z Zilqt + di’ + i V(’L, Zl) € MRFa VteT (34)

qeQ qeQ
Z Zigt < Z Zitgt +dyr —vi +1 V(i i') e MEB vteT (35)
q€Q q€Q
Z Z Zigt (1 — pg) < Z Z Zigt g Vpe P, VteT (36)
iEN q€Q)p i€EN geQp
Zigt € {0, 1} Vi€ N,VYqeQ,VteT. (37)

Constraints (29) make sure that each assigned container is loaded by the end of the time
horizon ¢'. Each 2, variable takes value 1 once a container has been loaded (30). Constraints
(31) limit the number of loadings per stage to one. All stages without loadings are contiguous
at the end (32). Constraints (33) make sure that the variables ug; for the reverse movements
of the handling equipment are correctly set. The accessibility of containers must be respected
both for containers loaded from the front (34) and from the back (35). Constraints (36)
ensure that the top slot is only loaded after the bottom slot has been filled.

Comparing the constraints of Al and A2, those of A2 ensuring a correct loading (34) —
(36) are simplified at the cost of a large number of additional constraints (30).

4.5. Formulation Bl

As the A formulations involve a large number of sequencing variables (i.e., |[N|-|Q|-|T),
we now present a formulation requiring fewer decision variables. We define binary variables
z+ taking value 1 if container 7 is loaded on the train in stage t. The slot to which a container
is assigned can be obtained from the v;, variables (13) of the load planning problem. This
leads to a reduction in the number of z;; variables by a factor || and results in the following
formulation:

minz m | 1— Z Vig | + Z Tj Z Wik + Z Z 52'1(1 (vig + ugi) + B2di + 82 (38)

iEN 4€Q jeJ  kekK; ieN \qeQ
s.t.
Constraints (2) — (18)
D a=) vy Vie N (39)
teT qeQ
d <1 VteT (40)
1EN
Z (Zi(t+l) - Zz't) S Z (Zit - zi(tfl)) VteT \ {tf, tl} (41)
iEN iEN
Vie N, Vi € N,VqeQ,
Zit + Vig + Zir(t41) — Ugit < 2 VteT)\ {tl} (42)
t t
Dz <Yzt di+ v V(i, i) e MRF vteT (43)
=0 =0
t t
Sz <Y et di — i+ 1 (i, ) e MRB vteT (44)
=0 =0
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t t
Dz <D ze— > (vighg +vig(1—pg)) +2 VpEP,Vie N,Vi' € N,VteT (45)
£=0 £=0 q€Qp

zie € {0, 1} Vie N,VteT. (46)

Constraints (39) make sure that each assigned container is loaded during the time horizon,
whereas (40) limit the number of loadings per stage to 1. All stages without loading are
shifted to the end (41). Constraints (42) ensure that the variables uy; take value 1 if the
handling equipment reverses from slot ¢ to container i. Constraints (43) ensure that either
i’ is moved before 4, ¢’ is double touched or i is picked from the back side. Constraints (44)
work equivalently for the containers that are retrieved from the back side. The right loading
order of each platform is guaranteed by (45). Each container i’ loaded in the top slot can
only be loaded after container ¢ has been loaded in the bottom slot first.

4.6. Formulation B2

Similar to the formulation A2 (Section 4.4), this formulation aims at simplifying the
constraints (43) - (45) and therefore uses the decision variable z;; to indicate whether container
7 has been loaded by t. The model can be written as follows:

min Z m | 1— Z Vig | + Z Tj Z Wk + Z Z Bilq (vig + ugi) + BQdi + 53%‘ (47)

1EN qeQ jeJ  keK; €N \qeqQ

s.t.

Constraints (2) — (18)

Zg = ) Vig Vie N (48)
q€Q
zit < Ziger1) Vie N,Vte T\ {t (49)
Sz <)z 1 vte T\ {t/} (50)
iEN iEN
D (ziewny — 2i) <> (2t — zi-1)) vt e T\ {t/, '} (51)
€N €N

Vie N, Vi € N,VqeQ,

Zit = Zi(t—1) — Zi't T Zir(t41) T Vig — Ugqr < 2 vie T\ {t/ 1) (52)
zit < zipe + dy + i Vi, i) e MR vteT (53)
zit < zpg +dip — i + 1 v(i, ') € MEB vteT (54)
Zi <z — Y (Vighq +vig(1 = ig)) +2 VpEP, Vi€ N,Vi' e NVt €T  (55)

q€Qp
zir € {0, 1} Vie N,VteT. (56)

Constraints (48) ensure that each assigned container has been loaded in the last stage.
Constraints (49) ensure that variables z;; stay at value 1 once i has been loaded, whereas
constraints (50) limit the number of loadings per stage to 1. Constraints (51) forbid stages
without loading between two with loadings. Constraints (52) make sure that the variables v;q,
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zit, and ug; are correctly synchronized. Constraints (53) and (54) take care of the accessibility
of the containers in the stack and constraints (55) guarantee the right order of loading with
respect to the bottom and the top slot of each platform.

4.7. Formulation C1

As it can be seen in the constraints (45) and (55), the correct loading of containers on
double-stack railcars with respect to the order of bottom and top slot requires a large number
of constraints in the B formulations. This is related to the lack of information as to whether
bottom slot ¢ is loaded at stage t. We now aim at reducing the number of these constraints
significantly by introducing the auxiliary variable b4 indicating whether bottom slot ¢ is fully
loaded at stage t. As in B1, the sequencing variables are activated if container 7 is loaded at
stage t. A large part of formulation B1 can be used. The model can be stated as follows:

minz m | 1— Z Vig | + Z Tj Z wijk + Z Z Bilq (vig + ugi) + B2d; + B> (57)

iEN qeQ jeJ  keK; 1€EN \qeQ

s.t.

Constraints (2) — (18) and (39) — (44)

t t
Srt Y vig-n)< S NSout+1l VpePVieNvVteT  (58)
=0

q€Qp q€EQpNQy =0
t
bt <Y zio — vig + 1 Vi€ N,VgeQ,,VteT  (59)
=0
zir € {0, 1} Vie N,VteT (60)
bgt € {0, 1} Vg e Qu, VteT. (61)

Constraints (58) manage the correct loading sequence of each platform: i can only be
loaded in the top slot in stage ¢ if the bottom slot of the same platform has been filled before.
Compared to (45), the number of constraints can be reduced by a factor of the number of
containers (|N|). The additional constraints (59) ensure the synchronization between the z;
and the by variables. Remark that if two 20 ft containers are assigned to the bottom slot g,
by can only take value 1 after the second loading.

4.8. Formulation C2

This formulation is similar to the formulation B2 and defines the sequencing variable z;
to be 1 if ¢ has been loaded by stage t. Analogously to the formulation C1, the auxiliary
variable by is introduced and takes value 1 if slot ¢ has been (fully) loaded by stage t. These
definitions lead to the following model:

min Z | 1- Z Vig | + Z T Z Wik + Z Z 51-1(1 (Vig + ugi) + B2d; + B> (62)
iEN 4€Q jeJ  keK; ieN \qeQ

s.t.

Constraints (2) — (18) and (48) — (54)
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Zit < (Hgbgr — vig (1 — p1g)) + 1 VpeP,Vie NVteT  (63)

q€Qp
byt < zit — vig + 1 Vie N,VgeQ,,VteT  (64)
zir € {0, 1} Vie N,VteT (65)
bgt € {0, 1} VgeQu, VteT. (66)

Constraints (63) make sure that the top slot is only filled if the bottom slot is full and
constraints (64) synchronize the by with the z;; variables.

4.9. Solution procedure

To accelerate the solution process, we use a heuristic to find an initial feasible loading
sequence based on an optimal load plan and use it to warm start the general-purpose solver.
All reported instances are solved using the following procedure:

1.

Solve the load planning problem described by Mantovani et al. (2018) to optimality
using a solver.

Append the term for the one-way distance cost to the objective function and add a cut
ensuring that the commercial value found in step 1 is met.

Using a solver, solve to optimality the problem of step 2 providing the solution found
in step 1.

Calling Algorithm 1, determine a feasible loading sequence for the solution found in
step 3.

Add the sequencing constraints to the model and the additional costs to the objective
function.

Solve the model of step 5 providing the solution found in step 4 as a warm start.

Data: Load plan
Result: Loading sequence
while not all assigned containers loaded do

if from front side accessible container found whose assigned slot is ready then
‘ load container ;

else if from back side accessible container found whose assigned slot is ready then
‘ load container from backside ;

else
load random container from front side whose assigned slot is ready and

rehandle all blocking containers ;
end
update state of slots ;

end
Algorithm 1: Algorithm for obtaining a feasible loading sequence based on a load plan
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5. Numerical experiments

The aim of the numerical experiments is to analyze the impact of the different formula-
tions on the performance of a general-purpose solver. We report the results of an extensive
numerical study demonstrating the strengths and weaknesses of the formulations. The test
instances are described in Section 5.1. In a first step, we run experiments with the formula-
tions (Sections 4.3 - 4.8) considering full distance cost even though we expect this problem
to be intractable for realistic size instances. Second, in Section 5.3, we report results with
formulations considering a simplified distance cost motivated by the fact that one-way moves
strongly correlate with the cost of the overall loading effort (Boysen et al., 2010). Third, in
Section 5.4, we examine the impact of the distance term in the objective function by ignoring
the related costs. In Section 5.5, we see how the best performing formulations deal with larger
instances. Last (Section 5.6), we report a case study highlighting a large reduction of the
handling cost when applying the integrated model compared to sequential approaches. For
all experiments, we compare the results for two types of handling equipment: a gantry crane
and a reach stacker.

5.1. Test instances and setup

Since LSPSs are typically solved for blocks (cf. Section 3.3), we consider test instances
related to the length of one block. Our basic test instances comprise 50 containers and a
minimum block length of 667 ft. They are truncated versions of the instances described by
Mantovani et al. (2018). We use five different sets of railcars. They are all part of the simple
random samplings, which — compared to stratified random samplings — result in a higher
share of railcars with high flexibility in terms of loading patterns (Mantovani et al., 2018).
There are two types of container sets: five sets consider containers of equal length only (40 ft),
the other five sets enclose containers of different lengths (40 ft, 45 ft, 48 ft, and 53 ft). The
weights of the containers are randomly drawn from a normal distribution. Combining five
railcar sequences with ten container sets yields a total of 50 instances.

We consider a layout of the storage area that is organized as follows (cf. Figure 1): the
containers are stacked at a maximum height of three containers. There are six lots in total,
which are arranged alongside the track. Depending on the number of containers, the lots vary
in depth (for 50 containers, the depth is 3).

For the experiments, we use the general-purpose solver IBM ILOG CPLEX 12.8 on one
thread of a 3.07 GHz processor equipped with 96 GB of RAM. The computational time limit
is set to 36,000 seconds. This time limit is of course beyond an acceptable amount of time
for an operational problem. However, we use this value for the sake of a better comparison of
the models. The C++ language has been used for data handling, building the model, calling
CPLEX, and running the algorithm. The reported computational times refer only to step 6
of Algorithm 1 as the other times do not exceed a few seconds.

5.2. FExperiments with full distance cost

We first test the formulations with full consideration of distance cost (Sections 4.3 - 4.8).
The instances described in Section 5.1 are intractable for the full formulations and we thus
truncate them in such a way that there remain 15 containers per instance. This corresponds
to a block length of 200 ft.

The numerical results for the optimization are reported in Table 4. The computational
time (CPU) indicates the average solution time for the instances that are solved to optimality.
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The average optimality gap is reported for those instances that cannot be solved to optimality
in the given time limit. For all formulations, no optimal solution can be found for any of the
gantry crane instances. For the instances considering reach stacker movements, a small share
can be solved to optimality. The average optimality gap is rather large (44.2 %) even after
ten hours of computation time. Since in 591 out of 600 runs, a solution is found without
any unproductive movement (rehandlings and detours), the remaining terms of the objective
function are responsible for the large gaps.

Formulation Al A2 B1 B2 C1 C2

Gantry crane
# opt. solved instances 0 0 0 0 0 0

Avg. opt. gap [%] 43.6 44.1 43.8 439 44.0 43.7
Reach stacker

# opt. solved instances 1 1 4 3 7 )

Avg. CPU [g] 333 590 477 733 553 683

Avg. opt. gap [%] 44.5 46.9 449 446 42.6 438

Table 4: Computational results for 50 instances with block length of 200 ft (15 containers, full distance)

These computational results point out that even for very small academic instances, the
problem taking into account the full distance cost is intractable for a general-purpose solver.
In the next section, we simplify the objective function by neglecting crane movements without
containers. As shown by Boysen et al. (2010), the cost for the loaded one-way moves strongly
correlates with the cost of the overall effort, thus making this simplification reasonable.

5.83. Fxperiments with one-way distance cost

We now test the formulations with simplified one-way distance cost. We fix the value of
the variables ug; to 1 and remove these variables from the objective function. Accordingly,
the constraints (23), (33), (42), and (52) are obsolete.

First, we solve the truncated instances of Section 5.2. Figure 4 displays the average
number of constraints and variables for all formulations. The number of constraints can be
drastically reduced by simplifying the distance cost.

The numerical results are reported in Table 5. All instances can now be solved to optimal-
ity within short computational time (on average 11 seconds for gantry crane and 26 seconds
for reach stacker movements). Three out of 50 instances require one rehandled container for
reach stacker movements, one of them additionally causes a detour for the crane. All other
instances are solved without any unproductive movement.

Formulation Al A2 Bl B2 Cl1 C2

Gantry crane
# opt. solved instances 50 50 50 50 50 50
Avg. CPU [s] 3 31 10 15 6 4

Reach stacker
# opt. solved instances 50 50 50 50 50 50
Avg. CPU [s] 18 8 21 20 6 7

Table 5: Computational results for the 50 instances of block length 200 ft (15 containers, one-way distance)
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Figure 4: Average number of variables and constraints per formulation for the 200 ft instances including gantry
crane and reach stacker movements with consideration of (2w) two-way and (1w) one-way distance cost

These convincing computational results motivate us to continue with the simplified dis-
tance cost and to apply it on the 667 ft instances. To give an idea about the different sizes of
the mathematical models, we depict the average number of variables and constraints in Figure
5 (logarithmic scale of y-axis). The A formulations have the largest number of variables (on
average 86,182), followed by the C formulations (14,400) and the B formulations (13,565).
The difference in the number of variables related to the handling equipment is quite small.
The number of constraints is lowest for the formulation Al (6,077 for gantry crane, and 20,817
for reach stacker) and ranges between 78,638 and 95,658 for the formulations A2, C1, and
C2. Due to the constraints (45) and (55), the number of constraints for the B formulations is
much higher (between 1.82 M and 1.89 M). Comparing the reach stacker to the gantry crane
movements, the number of constraints increases by roughly 15,000 on average.

The numerical results for the optimization are given in Table 6. For a better interpretation
of the optimality gap, the average number of rehandlings and retrievals from the back side of
the lot are given for instances that could not be solved to optimality. The results show that
the problems with reach stacker movements are harder to solve than those with gantry crane
movements: the average number of optimally solved instances drops from 38 to 28, the average
computational time rises from roughly two hours to four hours and the average optimality
gap increases from 9 % to 25 %. This is related to the higher number of forbidden loading
sequences. For both cranes, all optimal solutions go without unproductive movements.

For the gantry crane, the number of instances solved to optimality varies between 26 and
43 out of a total of 50. The formulation C1 finds the highest number of optimal solutions,
followed by formulations A1 and C2. Concerning the computational times, the C formulations
clearly outperform the others. Regarding the optimality gaps, the formulations C1, C2, and
A2 evidently dominate the others. The average number of rehandled containers for instances
that are not optimally solved at timeout is rather low for all formulations.

The instances containing reach stacker movements, however, show a different picture.
Whereas the number of optimally solved instances decreases significantly for the A and B
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Figure 5: Average number of variables and constraints per formulation for the 667 ft instances (one-way
distance, gc: gantry crane, rs: reach stacker)

Formulation Al A2 B1 B2 C1 C2
Gantry crane
# opt. solved instances 42 37 26 38 43 42
Avg. CPU [ 5418 9268 20,526 12446 1,423 821
Avg. opt. gap [%)] 25.5 5.0 14.6 7.0 0.6 0.6
Avg. # rehandlings (timeout) 1.5 0.2 1.4 0.3 0.0 0.0
Reach stacker
# opt. solved instances 26 22 9 29 41 40
Avg. CPU [¢] 16,897 19,462 30,401 17,181 1,388 1,041
Avg. opt. gap [%] 61.4 77 441 345 06 06
Avg. # rehandlings (timeout) 4.5 0.1 4.9 1.8 0.0 0.0
Avg. # detours (timeout) 2.4 0.2 2.0 0.9 0.0 0.0

Table 6: Computational results for the 50 instances of block length 667 ft (50 containers, one-way distance)

formulations, the numbers remain almost stable for the C formulations. The latter clearly
surpass the other formulations with respect to computational time and optimality gap. Com-
paring the average number of unproductive movements at timeout, they are reasonable for
all formulations and lowest for A2, C1, and C2.

We now examine whether and how the container characteristics have an impact on the
computational results. Figure 6 compares the number of optimally solved instances for two
settings of container characteristics. Interestingly, the numbers differ a lot. On average 15
(resp. 12) out of 25 instances can be solved to optimality using a gantry crane (resp. reach
stacker) considering instances with containers of equal length. The share of solved instances
with containers of four different lengths is considerably higher (23 for gantry crane, 16 for
reach stacker). Due to the symmetry of load plans, the solution space for containers of equal
size is larger.

In summary, the large number of constraints of the B formulations slows the model down
significantly. The C formulations dominate the other formulations in terms of consistency,
computational time, and optimality gap. The reduction in the number of variables (com-
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Figure 6: Number of solved instances with respect to container characteristics (1 size: 40 ft, 4 sizes: 40 ft,
45 ft, 48 ft, and 53 ft), handling equipment (gc: gantry crane, rs: reach stacker) and formulation

pared to A) at the expense of more constraints seems to be the best trade-off we could find.
Interestingly, these formulations seem to be hardly affected by the higher complexity caused
by the reach stacker movements. On average, the C formulations show reasonable computing
times below 1,800 seconds. Except for the B formulations the two different definitions of
the z variables (i loaded at or by t) seem not to affect the performance strongly. For the B
formulations, the second definition works considerably better. With respect to the solution
quality at timeout, A2 (resp. B2) dominates Al (resp. B1).

5.4. Fxperiments ignoring distance cost

Many intermodal terminals are built in urban areas where space is a scarce resource.
Thus, their dimensions are rather small and the distance covered by the handling equipment
while loading the train may be negligible. In this context, the relevance of the particular term
related to the distance in the objective function is questionable. In this section, we remove
the term from the objective function and use (67) to investigate the changes in the solution
process:

mian 1-— Zviq + ZTJ’ Z Wik + Z (52dz’ + 53%) . (67)
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The numerical results for these experiments are reported in Table 7. Similarly to the
results presented in Section 5.3, the reach stacker instances are harder to solve. On average,
47 (resp. 38) out of 50 instances considering a gantry crane (resp. reach stacker) as handling
equipment could be solved to optimality. Compared to the results with one-way distance cost
(38 and 28 instances), these figures are considerably higher.

For the gantry crane, all problems can be solved to optimality with the A and C formu-
lations. The average computation time drops from roughly 94 (resp. 157) to 18 (resp. 66)
minutes for the formulation A1 (resp. A2) compared to the prior experiments (Section 5.3).
The computational times for the formulations C1 and C2 are on average 11 and 17 minutes,
respectively. The number of instances solved increases for the formulations B1 and B2 to 42
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Formulation Al A2 B1 B2 C1 C2

Gantry crane

# opt. solved instances 50 50 42 40 50 50
Avg. CPU [s] 1,091 3,969 17,945 14,755 651 995
Avg. opt. gap [%)] - - 97.8 97.9 - -
Avg. # rehandlings (timeout) - - 5.9 6.6 - -
Reach stacker
# opt. solved instances 48 47 14 18 50 50
Avg. CPU 3] 8,935 11,546 29,145 24,025 1,210 1,361
Avg. opt. gap [%] 100.0  95.5 98.3 98.8 - -
Avg. # rehandlings (timeout)  16.5 1 14.4 9.9 - -
Avg. # detours (timeout) 10 1 4.7 4.2 - -

Table 7: Computational results for the 50 instances of block length 667 ft (50 containers, no distance)

and 40. The computational times are on average much higher than for the other formulations
(299 and 246 minutes).

The reach stacker movements intensify the differences between the formulations. The C
formulations are the only ones for which one can solve all 50 instances to optimality. The
average computation time is 20 minutes for C1 and 23 minutes for C2, respectively. The
formulations A1 and A2 solve 48 and 47 instances. The computational times are 149 and 192
minutes, and hence much higher compared to C1 and C2. The formulations B1 and B2 are
only able to solve 14 and 18 instances in more than eight and six hours on average.

For all formulations, the optimality gap for instances without proven optimum is very large
(> 95%). The number of unproductive movements at timeout is reasonable for the instances
solved by formulation A2. In terms of computational time, again, the C formulations clearly
outperform the others. The A formulations can still deal with the instance size, whereas the
B formulations do not perform reliably on these instances.

The figures show that the costs for the distance in the objective function makes the
optimization problem considerably harder. Therefore, it is expedient to discard this term if
the layout of the terminal is rather compact and distance costs are negligible.

5.5. Ezperiments with larger instances

The computational experiments reported in Sections 5.3 and 5.4 indicate that the formu-
lations C1 and C2 work best with respect to reliability and computational time. We now use
these formulations without consideration of the distance on larger instances to examine which
instance size can be solved in reasonable time. The results are reported in Table 8 and Figure
7. Recall that the largest instances that solved to optimality for the LPSP for single-stack
trains in a similar setting comprise 40 containers (Ambrosino et al., 2013).

The share of instances solved to optimality within ten hours drops significantly with
increasing size. For all sizes, no unproductive movements are part of the solutions of those
instances that are solved to optimality. All 50 instances comprising 1,000 ft (75 containers)
can be solved to optimality for the gantry crane movements. For the reach stacker instances,
however, only 28 of the instances can be solved to optimality for the C1 and 36 for the C2
formulations. The computational times are above five hours and thus not appropriate for
operational problems.
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Formulation C1 C2 C1 C2 C1 C2 C1 C2

Instance size 667 ft 1,000 ft 1,500 ft 2,000 ft
# Containers 50 75 113 150
Gantry crane
# opt. solved instances 50 50 50 50 11 15 1 0
Avg. CPU [ 651 995 3,333 2,688 31,000 22,777 15 -
Avg. opt. gap [%] - - - - 99.6 95.8 99.9  99.8
Avg. # rehandlings (timeout) - - - - 25.5 16.3 39.6 389
Reach stacker
# opt. solved instances 50 50 28 36 0 0 ) 0
Avg. CPU [g] 1,210 1,361 19,727 17,450 - - 20 -
Avg. opt. gap [%] - - 98.2 95.9 100.0 99.8  100.0 100.0
Avg. # rehandlings (timeout) - - 14.3 3.7 65.6 60.6 88.0  82.8
Avg. # detours (timeout) - - 2.0 2.9 7.0 7.2 7.5 6.7

Table 8: Computational results for the large instances (50 of each size) without consideration of distance cost
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Figure 7: Share of solved instances (out of 50) with respect to instance size, formulation, and handling
equipment (no distance considered, gc: gantry crane, rs: reach stacker).

Bigger instances comprising a block of at least 1,500 ft length and 113 containers can
hardly be solved considering the gantry crane. Only 11 (resp. 15) instances are solved opti-
mally with the formulation C1 (resp. C2) within the given time limit. None of the instances
with reach stacker movements can be solved to optimality. Note that the average optimal-
ity gap by the end of the computational time is very large (> 95 %). The solution quality
in terms of unproductive movements at timeout is poor except for the C2 formulation with
instance size of 1,000 ft.

The largest instances that we test comprise 2,000 ft and 150 containers. Only very few
instances can be solved to optimality. The surprinsingly fast computational times are related
to the fact that in all six cases, the heuristic provides an initial optimal solution (without any
unproductive movements) and CPLEX quickly proves the optimality of the solution. In none
of the cases could the solver find the optimal solution without the initialization.
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5.6. Savings achieved by solving the integrated LPSP

Last, we report results from a study investigating whether the integrated LPSP can reduce
the handling cost compared to the sequential solution as suspected in our motivation. We
therefore solve twice the same 667 ft instances with consideration of the one-way distance
cost. In the first run, we optimize the load plan. In the second run, we optimize the load
sequencing taking the fixed load plan as an input. As not all instances can be solved to
optimality with the integrated model (Table 6), we only compare instances that are optimally
solved with at least one of the six formulations (49 instances for a gantry crane, 41 instances
for a reach stacker). The distribution of the number of rehandled containers obtained by the
sequential model is displayed in Figure 8.

g 301 — |00 Gantry crane

§ 0 Reach stacker

= 20 |
%

g

- 10 |- I
: 0 BE B i

= ol —— Di D L = = i
@ I I I I I I I

0 1 2 3 4 5 6 7 8 9
Number of rehandled containers

Figure 8: Distribution of the number of rehandled containers for the sequential solving of the LPSP

For the gantry crane experiments, up to 8 containers (on average 4.1) must be rehandled
in the sequential model, whereas the number of rehandlings can be reduced to 0 with the
integrated model. For the reach stacker instances, the number of double touched containers
varies between 2 and 9 (on average 5.9) and drops to 0. The number of detours varying
between 0 and 2 (on average 0.4) can be lessened to 0. In other words, the integrated
model could find for every single instance a loading sequence without using any unproductive
movement at all. Recall that the solution of the integrated model is in no case worse than
the solution found in the sequential procedure in terms of penalty for unloaded containers.

The integrated model tends to choose load plans that either include all containers of one
stack or those that are most easily accessible. Contrarily to the load plans found without
consideration of the handling cost, containers whose neighboring load units in the pile are not
loaded are rarely part of the load plan.

These results underline that, from an operational point of view, the solution quality can
be significantly improved with an integrated model. Hence, terminal operators could clearly
benefit from a lower handling cost.

6. Conclusions and future research

In this paper, we have introduced the load planning and sequencing problem for double-
stack intermodal trains. We have modeled the movements of the handling equipment in
a flexible way in a preprocessing step, such that a set of forbidden retrieval sequences is
obtained. Starting from the model for the load planning problem for double-stack intermodal
trains proposed by Mantovani et al. (2018), we have introduced six different ILP formulations.
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Computational results show that the instances considering reach stackers instead of gantry
cranes are much more difficult to solve. This is due to more complex accessibility rules of
the reach stackers yielding more dependencies between the movements, which finally results
in a higher number of constraints. Furthermore, we found that two out of six formulations
(C1 and C2) outperform the others. Both of them introduce two sets of decision variables:
one is related to the perspective of the containers z; and the second one to the perspective
of slots of the train by;. These models seem to be much less affected by the higher number of
forbidden sequences caused by the reach stacker.

Additionally, we show that by ignoring the costs for the distances occurring in the termi-
nal, as it may be suitable for terminals with a compact layout, we can solve instances with
a block length of 667 ft and 50 containers with a commercial solver in reasonable time. For
larger instances, however, the computational times are too high for an operational problem.
Comparing the computational results to those reported by Mantovani et al. (2018), the re-
markable increase in complexity by integrating the load planning and the load sequencing
problem becomes clear.

Finally, we highlight that the integrated model can significantly reduce the handling cost
in terminals compared to the sequential solving. In our case study comprising 50 containers,
the number of rehandled containers drops from 4.1 to 0 for gantry crane movements and from
5.9 to 0 for reach stacker movements. This confirms that an integrated solution of the LPSP
can be of great benefit for terminal operators.

Future research should be dedicated to an alternative approach to model the two-way
distance to achieve a more tractable formulation. In addition, the sequencing of double
touches is a relevant extension of the model as, in rare cases, the rehandling of blocking
containers may involve further rehandlings. Tailored solution methods are an additional
subject for future research as fast solutions need to be found by terminal operators. Last, it
might be interesting to take more than one handling equipment into account at once.
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